

CDRouter Tips and Tricks for 2023

An open panel with Matt, Brad, and Brian

Matt Langlois QA Cafe VP of Customer Success

Brad Ritchie

QA Cafe Sr. Technology Specialist & Head of Training

Brian Dubreuil

QA Cafe Sr. Technology Specialist & Support Guru

Tip #1: Keep your configs up to date

With the config upgrade feature

Tip #1: Keep your configs up to date

See this <u>KB article</u> for more information.

Tip #1: Keep your configs up to date

When upgrading you have the option of backing up the original config too.

Bulk config upgrade is coming in CDRouter 13.9!

Using the CDRouter Security expansion

- Using the internet connection sharing (ICS) feature which is included with the CDRouter Security expansion.
- ICS allows DUT to access the internet for DNS and cloud-based services.
- Within CDRouter:
 - Packets to unknown destinations are forwarded to the internet via the eth0 MGMT interface of the NTA1000.
 - DNS requests for unknown domains are forwarded to the operating system's resolver and ultimately to the internet via the eth0 MGMT interface of the NTA1000.

Cloud access is enabled using the internet connection sharing (ICS) feature that is included with *CDRouter Security*.

ICS traffic may be scanned automatically for malicious content using the Suricata-based *Traffic Analysis* feature.

When ICS is enabled, a separate capture file is generated for ICS traffic. Capture files may be viewed directly within CDRouter or pushed automatically to <u>CloudShark</u> for access to more advanced pcap analysis features.

Click <u>here</u> for more information on the CDRouter Security expansion!

9

With ICS enabled, DNS queries from the DUT are sent to CDRouter first and the system resolver second. This allows some DNS queries to be resolved by real servers.

With ICS enabled, non-test traffic is forwarded to the MGMT interface and out to the internet.

Display Filter Display Filter No. TIME Source DESTINATION PROTOCOL LENGTH INFO 1 0.00000 202.254.1.2 202.254.10.1.1 DNS 60 Standard query 0x4f40 A www.google.com 1 0.00121 202.254.1.2 202.254.1.2 202.254.1.2 202.254.1.2 202.254.1.2 202.254.1.2 DNS 76 Standard query response 0x4f55 A www.google.com 1 42.251.40.164 202.254.1.2 202.254.1.2 DNS 76 Standard query response 0x4f55 A www.google.org A 216.239.32.2.7 7 0.03547 202.254.1.2 216.239.32.2.7 TCP 60 57643 - 80 [SYN] Seq=0 Min=2200 Lan=0 MSS=1460 SAK PERM=1 TSxi.4 4294942382 TSecr=0 6 0.034082 202.254.1.2 142.251.40.164 TCP 52 3307 [SYN, ACK] Seq=0 Ack=1 Win=2328 Len=0 MSS=1410 SAK PERM=1 TSxi.4 4294942382 TSecr=0 6 0.05970 202.254.1.2 142.251.40.164 TCP 52 3307 [SYN, ACK] Seq=0 Ack=1 Win=2328 Len=0 MSS=1410 SAK PERM=1 TSvi.4 4294942382 TSecr=0 112.251.40.164 TCP 52 3307 [SYN, ACK] Seq=0 Ack=1 Win=23248 Len=0 TSva1=4294942385 TSecr=833888516	
SEATE-ICS.CAD Display Filter Result: 20221127204208 Package: Amplifi-nofatal Test: start.txt Download: start-ics.cap NO. TIME Source DESTINATION PROTOCOL LENGTH INFO 1 0.001219 202.254.10.1 DBS 6 Standard query oxafb5 A www.google.com 0.001219 202.254.101.1 <th< th=""><th></th></th<>	
Result:20221127204208 Package: Amplifi-nofatal Test: start.tt Download: start-ics.cap No. TIME SOURCE DESTINATION PROTOCOL LENGTH INFO 1 0.000000 202.254.1.2 202.254.1.1 DNS 60 Standard query 0x4f40 A www.google.com 2 0.001219 202.254.1.2 202.254.1.1 DNS 60 Standard query response 0x4f40 A www.google.com A 142.251.40.164 1 0.101219 202.254.1.1 202.254.1.2 DNS 76 Standard query response 0x4f40 A www.google.com A 142.251.40.164 1 0.103147 202.254.1.2 112.251.40.164 TCP 56 Standard query response 0x4f50 A www.google.com A 142.251.40.164 1 0.033547 202.254.1.2 116.239.32.27 TCP 60 57643 + 80 [SYN] Seq=0 Min=29200 Len=0 MSS=1460 SACK_PERM=1 TSVal +294942382 TSec=0 0 0.03560 202.254.1.2 1142.251.40.164 TCP 52 3307 H 80 [SYN] Seq=0 Ack=1 Win=65535 Len=0 MSS=1412 SACK_PERM=1 TSVal +294942382 TSec=0 0 0.05660 202.254.1.2 142.251.40.164 HTTP 117 GET /generete_2/04 HTTP/1.1 0	✓ Apply
O. TIME SOURCE DESTINATION PROTOCOL LENGTH INFO 0.00000 202.254.1.2 202.254.10.1 DNS 60 Standard query 0x4f40 A www.google.com 0.001219 202.254.1.2 202.254.10.1 DNS 60 Standard query response 0x4f40 A www.google.com 0.001219 202.254.101.1 202.254.10.1 DNS 60 Standard query response 0x4f40 A www.google.com A 142.251.40.164 0.003547 202.254.101.1 202.254.12 DNS 76 Standard query response 0x4f55 A www.google.com A 142.251.40.164 0.033547 202.254.1.2 142.251.40.164 NPP A0 31107 ± 50 500 Mine/32001 Lane/M XSc1460 SACK_PERMIT TSKul 4294942382 TSecre0 0.033547 202.254.1.2 142.251.40.164 NPP A0 31107 ± 50 SWI Skogn Mine/32001 Lane/M SSc1460 SACK_PERMIT TSkul 4294942382 TSecre0 0.056561 142.251.40.164 C22.254.1.2 TCP 60 80 + 33307 [SYN, ACK] Seq=0 Ack=1 Win=5535 Len=0 MSS=140 SACK_PERMIT TSkul 4294942382 TSecre0 0.056565 202.254.1.2 142.251.40.164 TCP 52 33307 [SYN, ACK] Seq=1 Ack=1 Win=5535 Len=0	
O. TIME SOURCE DESTINATION PROTOCOL LENGTH INFO 0.000000 02.254.1.2 202.254.101.1 DNS 60 Standard query 0x4f40 A www.google.com A www.google.com 0.001219 202.254.1.2 202.254.1.1.2 202.254.1.1 DNS 60 Standard query 0x4f55 A www.google.com A 142.251.4.0.164 0.001219 202.254.1.1 202.254.1.2 DNS 76 Standard query response 0x4f55 A www.google.com A 142.251.4.0.164 0.03547 102.254.1.2 142.251.4.0.164 YP 60 Standard query response 0x4f55 A www.google.com A 142.251.4.0.164 0.035461 102.254.1.2 142.251.4.0.164 YP 60 Standard query response 0x4f55 A www.google.com A 142.251.4.0.164 0.03547 102.254.1.2 142.251.4.0.164 YP 60 Standard query response 0x4f55 A www.google.com A 142.251.4.0.164 0.05660 142.251.4.0.164 202.254.1.2 TCP 60 Standard [QE YPRONCHERIN] Standard Stare PERN=1 TSWal *294942382 TSecremo 0.056561 142.251.4.0.164 TCP 52 33307 [SYN ACK] Seq=0 Ack=1 Win=2535 Len=0 MSS=14	
0.00000 202.254.1.2 202.254.10.1 DNS 60 Standard query 0x4f40 A www.google.com 0.00121 202.254.1.2 202.254.10.1 DNS 60 Standard query 0x4f50 A www.google.com 0.00121 202.254.1.2 202.254.10.1 DNS 60 Standard query response 0x4f40 A www.google.com A 142.251.40.164 0.00147 202.254.10.1 202.254.12 DNS 76 Standard query response 0x4f40 A www.google.com A 142.251.40.164 0.03567 202.254.10.1 202.254.12 DNS 76 Standard query response 0x4f40 A www.google.com A 142.251.40.164 0.03567 202.254.10.2 147.251.40.164 TCP 60 5763 - 80 [SYN] Segen Minc24200 Lene0 MSS=1460 SACK_PERM=1 TSval #4294942382 TSecr=0 0.03661 142.251.40.164 TCP 60 80 - 33307 [SYN Ack] Seg=0 Ack=1 Win=65355 Len=0 MSS=1412 SACK_PERM=1 TSval #4294942382 TSecr=0 0.05650 142.251.40.164 TCP 52 33307 + 80 [ACK] Seg=1 Ack=1 Win=25355 Len=0 MSS=1412 SACK_PERM=1 TSval=2324228 0.058515 202.254.1.2 142.251.40.164 TCP 52 57643 + 80 [ACK] Seg=1 Ack=1 Win=2535 Len=0 MSS=1412 SACK_PERM=1 TSval=23242288 1	
0.001219 202.254.1.2 202.254.1.1 DNS 60 Standard query 0xafb5 A www.google.org 0.001213 202.254.1.01.1 202.254.1.1.2 DNS 76 Standard query response 0xafb0 A www.google.com A 142.251.40.164 0.01011 202.254.101.1 202.254.1.2 DNS 76 Standard query response 0xafb5 A www.google.com A 142.251.40.164 0.03408 202.254.1.2 1140 TP A0 1140 Res News.google.com A 142.251.40.164 2494942382 TSecr=0 0.034082 202.254.1.2 216.239.32.27 TCP 60 57643 + 80 [SYN] Seg=0 Win=29200 Len=0 MSS=1460 SACK_PERM=1 TSVal 4294942382 TSecr=0 0.034082 202.254.1.2 142.251.40.164 TCP 52 33307 [SN] ACK] Seg=0 Ack=1 Win=2528 Len=0 MSS=1412 SACK_PERM=1 TSVal 4294942382 TSecr=0 0.05650 142.251.40.164 202.254.1.2 TCP 60 80 + 33307 [SN] ACK] Seg=0 Ack=1 Win=25248 Len=0 MSS=1412 SACK_PERM=1 TSVal=8388516 0.05520 0.05655 216.239.32.27 202.254.1.2 TCP 60 80 + 57643 [SN] ACK] Seg=1 Ack=1 Win=25248 Len=0 MSS=1412 SACK_PERM=1 TSVal=2324298 1.068571 202.254.1.2	
0.001 202.254.101.1 202.254.1.2 DNS 76 Standard query response 0x4f40 A www.google.com A 142.251.40.164 0.001 202.254.101.1 202.254.1.2 DNS 76 Standard query response 0x4f40 A www.google.com A 142.251.40.164 0.033547 202.254.1.2 113.251.40.114 202 DNS 76 Standard query response 0x4f50 A www.google.com A 142.251.40.164 0.033547 202.254.1.2 113.251.40.114 202 DNS 76 Standard query response 0x4f50 A www.google.com A 142.251.40.164 0.034082 202.254.1.2 113.251.40.164 202.254.1.2 112.251.40.164 202.254.1.2 TCP 60 57643 + 80 [SN] Segn0 Ack=1 Win=65535 Len=0 MSS=1412 SACK_PERM=1 TSval=4294942382 TSec==0 0.05650 142.251.40.164 TCP 52 3307 + 80 [ACK] Seg=1 Ack=1 Win=65535 Len=0 MSS=1412 SACK_PERM=1 TSval=2324298 0.056550 202.254.1.2 142.251.40.164 TCP 60 80 + 57643 [SN, ACK] Seg=1 Ack=1 Win=25248 Len=0 TSval=4294942385 TSec==93284856 0.056551 202.254.1.2 216.239.32.27 TCP 52 5643 [SN, ACK] Seg=1 Ack=1 Win=25248 Len=0 TSval=4294942386 TSec==23242988 0.066372 202.254	
18010 202.254.101.1 202.254.1.2 DNS 76 Standard query response 0xafb5 A www.google.org A 216.239.32.27 0.033547 202.254.1.2 142.251.40.164 47P 60 11417 = 80 15W1 Social Min.24200 Lance MSS14A1 SAVE DEBUGI TSWI 4294942382 TSecre0 0.033547 202.254.1.2 142.251.40.164 47P 60 15763 + 80 [SYN] Social Min.24200 Lance MSS14A1 SAVE DEBUGI TSWI 4294942382 TSecre0 0.05660 142.251.40.164 202.254.1.2 TCP 60 80 - 33307 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0 MSS-1412 SACK FERM=1 TSVal #2294942385 TSecre89388556 0.05661 142.251.40.164 TCP 52 33307 + 80 [ACK] Seq=1 Ack=1 Win=65535 Len=0 MSS-1412 SACK FERM=1 TSVal #2294942385 TSecre89388556 0.056571 202.254.1.2 142.251.40.164 HTP 117 GET /generate_204 HTP/1.1 0.064565 206.254.1.2 142.251.40.164 HTP 117 GET /generate_204 HTP/1.1 0.064565 206.254.1.2 142.251.40.164 HTP 117 GET /generate_204 HTP/1.1 0.064565 206.254.1.2 142.251.40.164 HTP 127 GET /generate_204 HTP/1.1 0.0645	
0.033547 12.254.1.2 12.254.1.	
0.034082 202.254.1.2 216.239.32.27 TCP 60 57643 + 80 [SYN] Seq=0 Win=29200 Len=0 MSS=1460 SACK_PERM=1 TSVal #4294942382 TSecr=0 0.05650 142.251.40.164 202.254.1.2 TCP 60 80 - 33307 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0 MSS=1412 SACK_PERM=1 TSVal=833885 0.05970 202.254.1.2 142.251.40.164 TCP 52 33307 + 80 [ACK] Seq=1 Ack=1 Win=29248 Len=0 MSS=1412 SACK_PERM=1 TSVal=83388510 0.094505 202.254.1.2 142.251.40.164 TCP 52 33307 + 80 [ACK] Seq=1 Ack=1 Win=29248 Len=0 MSS=1412 SACK_PERM=1 TSVal=2324298 0.094505 202.254.1.2 142.251.40.164 TCP 60 80 + 57643 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0 MSS=1412 SACK_PERM=1 TSVal=2324298 0.064554 216.239.32.27 CCP 60 80 + 57643 [SYN, ACK] Seq=1 Ack=6 Win=65535 Len=0 MSS=1412 SACK_PERM=1 TSVal=2324298 0.064571 202.254.1.2 216.239.32.27 TCP 52 5643 + 80 [ACK] Seq=1 Ack=6 Win=65536 Len=0 MSS=1412 SACK_PERM=1 TSVal=2324298 0.069272 202.254.1.2 216.239.32.77 TCP 52 80 + 33307 [ACK] Seq=1 Ack=6 Win=65536 Len=0 TSVal=893888550 TSecr=4294942385 0.090926 142.251.40.164 202.254.1.2 T	J WS=64
0.05654 142.251.40.164 202.254.1.2 TCP 60 80 + 33307 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0 MSS=1412 SACK_PSM=1 TSval=8938885 0.05970 202.254.1.2 142.251.40.164 TCP 52 33307 + 80 [ACK] Seq=1 Ack=1 Win=25238 Len=0 TSval=4294942385 TSecr=893888516 0.05970 202.254.1.2 142.251.40.164 TCP 52 33307 + 80 [ACK] Seq=1 Ack=1 Win=25238 Len=0 TSval=4294942385 TSecr=893888516 0.05850 202.554.1.2 142.251.40.164 HTP 117 GET /generate_204 HTTP/1.1 0.066371 202.254.1.2 216.239.32.27 TCP 52 57643 + 80 [ACK] Seq=1 Ack=1 Win=25248 Len=0 TSval=4294942386 TSecr=232429885 0.069272 202.254.1.2 216.239.32.27 TCP 52 80 + 33307 [ACK] Seq=1 Ack=6 Win=5536 Len=0 TSval=4294942386 TSecr=4294942385 1 0.090486 142.251.40.164 202.254.1.2 TCP 52 80 + 33307 [ACK] Seq=1 Ack=6 Win=5536 Len=0 TSval=893888550 TSecr=4294942385 1 0.090486 142.251.40.164 202.254.1.2 HTP 179 HTTP/1.1 204 No Content 1 0.090519 202.254.1.2 142.251.40.164 TCP 52 307 +) WS=64
0.059740 202.254.1.2 142.251.40.164 TCP 52 33307 + 80 [ACK] Seq=1 Ack=1 Win=29248 Len=0 TSval=4294942385 TSecr=893888516 0.04605 202.254.1.2 142.251.40.164 HTTP 117 GET /generate_204 HTTP/1.1 0.054505 202.254.1.2 142.251.40.164 HTTP 117 GET /generate_204 HTTP/1.1 0.054505 202.254.1.2 142.251.40.164 HTTP 117 GET /generate_204 HTTP/1.1 0.063515 202.254.1.2 216.239.32.27 TCP 52 57643 + 80 [ACK] Seq=0 Ack=1 Win=29248 Len=0 TSval=4294942366 TSecr=232429885 0.069872 202.254.1.2 216.239.32.27 HTTP 117 GET /generate_204 HTTP/1.1 0.090946 142.251.40.164 202.254.1.2 TCP 50 80 + 33307 [ACK] Seq=1 Ack=6 Win=65536 Len=0 TSval=893888550 TSecr=4294942385 0.090926 142.251.40.164 202.254.1.2 HTTP 179 HTTP/1.1 204 No Content 0.090916 142.251.40.164 TCP 52 33307 + 80 [ACK] Seq=4 Ack=6 Win=65536 Len=0 TSval=4294942388 TSecr=893888550 0.090510 216.239.32.27 142.251.40.164 TCP 52	16 TSecr=4294942382 WS=256
0.02605 202.254.1.2 142.251.40.164 HTP 117 GET /generate_204 HTTP/1.1 0.02605 202.254.1.2 202.254.1.2 TCP 60 80 - 57643 [STN, ACK] Seq=0 Ack=1 Win=25535 Len=0 MSS=1412 SACK_PERM=1 TSva1=2324298 1.020527 202.254.1.2 216.239.32.27 TCP 52 57643 - 800 [ACK] Seq=1 Ack=6 Win=29248 Len=0 TSva1=4294942386 TSecr=232429885 0.090728 202.254.1.2 216.239.32.27 HTTP 117 GET /generate_204 HTTP/1.1 0.090486 142.251.40.164 202.254.1.2 TCP 52 80 + 33307 [ACK] Seq=1 Ack=66 Win=65536 Len=0 TSva1=893888550 TSecr=4294942385 1.090926 142.251.40.164 202.254.1.2 HTTP 179 HTTP/1.1 204 No Content 0.090510 202.254.1.2 142.251.40.164 TCP 52 80 + 33307 + 80 [ACK] Seq=6 Ack=128 Win=29248 Len=0 TSva1=4294942388 TSecr=893888550 55 0.090510 202.254.1.2 142.251.40.164 TCP 52 80 + 33307 + 80 [ACK] Seq=6 Ack=128 Win=29248 Len=0 TSva1=4294942388 TSecr=893888550 55 0.095510 202.254.1.2 142.251.40.164 TCP 52 80 + 33307 + 80 [ACK] Seq=1 Ack=66 Win=65536 Len=0 TSva1=4294942386 0.095510 202.254.1.2 142	
0 0 0 0 653545 216.239.32.27 202.254.1.2 TCP 60 $80 \rightarrow 57643$ [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0 MSS=1412 SACK_PERM=1 TSval=2324298 1 0.068571 202.254.1.2 216.239.32.27 TCP 52 $57643 \rightarrow 80$ [ACK] Seq=1 Ack=1 Win=25248 Len=0 MSS=1412 SACK_PERM=1 TSval=23242988 2 0.069272 202.254.1.2 216.239.32.27 HTTP 117 GET /generate_204 HTTP/1.1 0.090486 142.251.40.164 202.254.1.2 TCP 52 $80 \rightarrow 3307$ [ACK] Seq=1 Ack=66 Win=65536 Len=0 TSval=4294942385 1 0.090926 142.251.40.164 202.254.1.2 HTTP 179 HTTP/1.1 204 No Content 5 0.09519 202.254.1.2 142.251.40.164 TCP 52 303 7 + 80 [ACK] Seq=1 Ack=66 Win=65536 Len=0 TSval=4294942386 TSecr=4294942386 6 0.09519 202.254.1.2 142.251.40.164 TCP 52 303 7 + 80 [ACK] Seq=1 Ack=66 Win=65536 Len=0 TSval=4294942386 TSecr=4294942386 6 0.09519 202.254.1.2 142.251.40.164 TCP 52 80 + 57643 [ACK] Seq=1 Ack=66 Win=65536 Len=0 TSval=4294942386 7 0.09519 216.239.32.27 202.254.1.2 TCP 52	
1 0.066871 202.254.1.2 216.239.32.27 TCP 52 57643 + 80 [ACK] Seq=1 Ack=1 Win=29248 Len=0 Tsval=4294942386 Tsecr=232429885 2 0.069272 202.254.1.2 216.239.32.27 HTTP 117 GET /generate_204 HTTP/1.1 0.090926 142.251.40.164 202.254.1.2 TCP 52 80 + 33307 [ACK] Seq=1 Ack=6 Win=55536 Len=0 Tsval=893888550 Tsecr=4294942385 0.090926 142.251.40.164 202.254.1.2 HTTP 179 HTTP/1.1 204 No Content 0.090519 202.254.1.2 142.251.40.164 TCP 52 80 + 33307 + 80 [ACK] Seq=6 Ack=128 Win=29248 Len=0 Tsval=4294942388 Tsecr=493888550 5 0.095519 202.254.1.2 142.251.40.164 TCP 52 80 + 57643 [ACK] Seq=4 Ack=6 Win=55536 Len=0 Tsval=4294942388 Tsecr=493888550 6 0.095519 202.254.1.2 142.251.40.164 TCP 52 80 + 57643 [ACK] Seq=4 Ack=6 Win=55536 Len=0 Tsval=4294942388 Tsecr=429442386 7 0.096164 216.239.32.27 202.254.1.2 TCP 52 [TCP Dup ACK 16/4] [80 - 57643 [ACK] Seq=1 Ack=6 Win=55536 Len=0 Tsval=232429918 Tsecr=429442366	385 TSecr=4294942382 WS=256
2 0.069272 202.254.1.2 216.239.32.27 HTTP 117 GET /generate_204 HTTP/1.1 0.090486 142.251.40.164 202.254.1.2 TCP 52 80 + 33307 [ACK] Seq=1 Ack=66 Win=65536 Len=0 TSval=893888550 TSecr=4294942385 4 0.090926 142.251.40.164 202.254.1.2 HTTP 179 HTTP/1.1 204 No Content 5 0.095519 202.254.1.2 1412.251.40.164 TCP 52 33307 + 80 [ACK] Seq=66 Ack=128 Win=29248 Len=0 TSval=4294942388 TSecr=893888550 5 0.095510 202.254.1.2 TCP 52 80 + 57643 [ACK] Seq=1 Ack=66 Win=5536 Len=0 TSval=22429918 TSecr=4294942386 6 0.095710 216.239.32.27 202.254.1.2 TCP 52 80 + 57643 [ACK] Seq=1 Ack=66 Win=65536 Len=0 TSval=22429918 TSecr=4294942386 7 0.096164 216.239.32.27 202.254.1.2 TCP 52 [TCP Dup ACK 16#1] 80 - 57643 [ACK] Seq=1 Ack=66 Win=65536 Len=0 TSval=23429918 TSecr=4294942385	
0.090486 142.251.40.164 202.254.1.2 TCP 52 80 → 33307 [ACK] Seg=1 Ack=66 Win=65536 Len=0 TSval=893888550 TSecr=4294942385 1 0.090926 142.251.40.164 202.254.1.2 HTTP 179 HTTP/1.1 204 No Content 5 0.095519 202.254.1.2 142.251.40.164 TCP 52 33307 → 80 [ACK] Seg=6 Ack=66 Win=29248 Len=0 TSval=4294942388 TSecr=893888550 5 0.095510 216.239.32.77 202.254.1.2 TCP 52 80 → 57643 [ACK] Seg=1 Ack=66 Win=55536 Len=0 TSval=22429918 TSecr=4294942386 7 0.096164 216.239.32.27 202.254.1.2 TCP 52 [TCP Dup ACK 16#1] 80 → 57643 [ACK] Seg=1 Ack=66 Win=65536 Len=0 TSval=23429918 TSecr=4294942386	
4 0.090926 142.251.40.164 202.254.1.2 HTTP 179 HTTP/1.1 204 No Content 5 0.095519 202.254.1.2 142.251.40.164 TCP 52 33307 + 80 [ACK] Seq=66 Ack=128 Win=29248 Len=0 TSval=4294942388 TSecr=893888550 5 0.095710 216.239.32.27 202.254.1.2 TCP 52 80 + 57643 [ACK] Seq=1 Ack=66 Win=65536 Len=0 TSval=4294942386 7 0.096164 216.239.32.27 202.254.1.2 TCP 52 [TCP Dup ACK 16#1] 80 - 57643 [ACK] Seq=1 Ack=66 Win=65536 Len=0 TSval=232429918 TSecr=4294942386	
5 0.095519 202.254.1.2 142.251.40.164 TCP 52 33307 → 80 [ACK] Seq=66 Ack=128 Win=29248 Len=0 TSval=4294942388 TSecr=893888550 5 0.095710 216.239.32.27 202.254.1.2 TCP 52 80 → 57643 [ACK] Seq=1 Ack=66 Win=65536 Len=0 TSval=232429918 TSecr=4294942386 7 0.096164 216.239.32.27 202.254.1.2 TCP 52 [TCP Dup ACK 16#1] 80 → 57643 [ACK] Seq=1 Ack=66 Win=65536 Len=0 TSval=232429918 TSec	
5 0.095710 216.239.32.27 202.254.1.2 TCP 52 80 → 57643 [ACK] Seq=1 Ack=66 Win=65536 Len=0 TSval=232429918 TSecr=4294942386 7 0.096164 216.239.32.27 202.254.1.2 TCP 52 [TCP Dup ACK 16#1] 80 → 57643 [ACK] Seq=1 Ack=66 Win=65536 Len=0 TSval=232429918 TSe	
7 0.096164 216.239.32.27 202.254.1.2 TCP 52 [TCP Dup ACK 16#1] 80 → 57643 [ACK] Seq=1 Ack=66 Win=65536 Len=0 TSval=232429918 TSe	
	cr=4294942386
	2017 March March and 10
riame 5: 00 bytes on wire (woo bits), oo bytes captured (woo bits) 0000 45:00:00 3c e7 e5:40:00 40:06 cf 36 ca fe 01:02	E<@.@6

🔊 CS Enterprise // Brad Ritchie - cloudshark.org

With ICS enabled, DNS queries from the DUT are sent to CDRouter first and the system resolver second. This allows some DNS queries to be resolved by real servers.

With ICS enabled, non-test traffic is forwarded to the MGMT interface and out to the internet.

SL	art ty	ping a Disp	lay Filter				✓ Apply Clear Filters ▼ ✓ ✓ Ø Analysis Tools ▼
	No.	Time	Source	Destination	Protocol	Length	Info
	1	0.000000	202.254.1.2	202.254.101.1	DNS	60	Standard query 0x4f40 A www.google.com
	2	0.001219	202.254.1.2	202.254.101.1	DNS	60	Standard query 0xafb5 A www.google.org
	3	0.004470	202.254.101.1	202.254.1.2	DNS	76	Standard query response 0x4f40 A www.google.com A 142.251.40.164
/	4	0.018016	202.254.101.1	202.254.1.2	DNS	76	Standard query response 0xafb5 A www.google.org A 216.239.32.27
	5	0.033347	202.234.1.2	142.231.40.104	TCF	00	- 55507 - 80 [31N] Seq=8 Win=25200 Len=0 H35=140 0 SACK_PERM=1 TSval=4294942382 TSecr=0 WS=64
	6	0.034082	202.254.1.2	216.239.32.27	TCP	60	57643 → 80 [SYN] Seq=0 Win=29200 Len=0 MSS=1460 SACK_PERM=1 TSval=4294942382 TSecr=0 WS=64
	7	0.056650	142.251.40.164	202.254.1.2	TCP	60	-80 22307 [5YN, AGK] 5eq 0 Ack-1 Win-55535 Len=0 MSS=1412 SACK_PERM=1 TSval=893888516 TSecr=4294942382 WS=256
	8	0.059520	202.254.1.2	142.251.40.164	TCP	52	33307 → 80 [ACK] Seq=1 Ack=1 Win=29248 Len=0 TSval=4294942385 TSecr=893888516
	9	0.062605	202.254.1.2	142.251.40.164	HTTP	117	GET /generate_204 HTTP/1.1
	10	0.063545	216.239.32.27	202.254.1.2	TCP	60	80 → 57643 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0 MSS=1412 SACK_PERM=1 TSval=232429885 TSecr=4294942382 WS=256
	11	0.068571	202.254.1.2	216.239.32.27	TCP	52	57643 → 80 [ACK] Seq=1 Ack=1 Win=29248 Len=0 TSval=4294942386 TSecr=232429885
	12	0.069272	202.254.1.2	216.239.32.27	HTTP	117	GET /generate_204 HTTP/1.1
	13	0.090486	142.251.40.164	202.254.1.2	тср	52	80 → 33307 [ACK] Seq=1 Ack=66 Win=65536 Len=0 TSval=893888550 TSecr=4294942385
	14	0.090926	142.251.40.164	202.254.1.2	HTTP	179	HTTP/1.1 204 No Content
•							
							0000 45 00 00 3c 9b 26 40 00 40 11 a3 8a ca fe 01 02 E
Ra	ame 1:	60 bytes o	n wire (480 bits)	, 60 bytes captur	ed (480 bit	5)	0010 ca fe 65 01 d2 37 00 35 00 28 53 49 4f 40 01 00e7.5.(SIO@
In	ternet	Protocol V	ersion 4, Src: 20	2.254.1.2, Dst: 2	02.254.101.	1	0020 00 01 00 00 00 00 00 03 77 77 77 06 67 6f 6f
) Us	er Dat	agram Proto	col, Src Port: 53	815, Dst Port: 53	and the second second		0030 67 6c 65 03 63 6f 6d 00 00 01 00 01 gle.com
Do	main N	ame System	(query)				

Tip #3: Manage DUTs remotely

Using the device connect feature

Tip #3: Manage the DUT remotely

Step 1: Click on the **Devices** tab to access the <u>device manager</u>. The device manager allows you to associate configs, packages, and results to specific DUTs and firmware versions improving analysis and reporting.

Step 2: Click the *New* button to create a new device for the DUT. Be sure to fill out of the information in the Management section. The device connect feature will not work properly without it!

Tip #3: Manage the DUT remotely

Step 3: Once the DUT has been added to the Devices tab, click the *Connect* button to establish a connection to the DUT's management interface from CDRouter.

Step 4: Once connected, click this link to open the DUT's management interface in a new tab.

DUT firmware and config files may also be stored in the device manager!

Tip #3: Manage the DUT remotely

Step 5: Click on the new tab to access the DUTs management interface through CDRouter.

Step 6: Log in to the DUT and manage it without leaving your chair!

It is also now possible to manage devices while tests are running!

CDROUTER Devices	C O LLINK SYSTEMS, INC. WIREL X +					~
← → C ▲ Not Secure pod2:380	Noduct Page: DIR-655 D-LAINK LOGIN LOGIN Ug in to the noute: UIRELESS Copyright @ 2004-2006 D-L	Hardware Version: 42 Firmware Version: 1.37AA	*	6	* 0	Μ :

Tip #4: Back your test data up

Using the the CDRouter backup tool

Tip #4: Backup your data

See this <u>KB article</u> for more information!

CDRouter includes its own backup and restore tool using ssh/rsync to backup everything in the /usr/cdrouter-datadirectory

0 0 0	💻 — root@pod67:/usr/cdrouter-data	
[[root@pod67 ~] cd /us	sr/cdrouter-data/	
[[root@pod67 cdrouter_c total 8	data]# 11	
drwxr-xr-x 6 root	root 50 Sep 14 13:08 attachments	
drwxr-xr-x 3 root	root 30 Mar 22 2022 custom	
drwx 20 cdrouter	r cdrouter 4096 Oct 31 08:50 data	
drwxr-xr-x 2 root	root 319 Sep 26 17:03 etc	
drwxr-xr-x 2 root	root 301 Nov 22 10:27 logs	
drwxr-xr-x 89 root	root 4096 Nov 22 06:15 results	
drwxr-xr-x 2 root	root 6 Nov 22 12:19 temp	
[root@pod67 cdrouter-c	data]#	

CDRouter stores all its data (configuration files, package definitions, and results) in the directory /usr/cdrouter-data.

We recommend keeping your external scripts and files here too!

0 🗢 🔵

🛅 ~ — root@pod67:/us//cdrouter-data

[[root@pod67 cdrouter-data] / /usr/cdrouter/bin/cdrouter-backup Usage: /usr/cdrouter/bin/cdrouter-backup [OPTION...] LOCATION Backup the CDRouter data on this system.

LOCATION can be a path on the local filesystem or a path on a remote SSH system [[user@][hostname:]][path].

Options:

-force

Do not ask for confirmation before continuing. -insecure Allow SSH connections with no host key validation.

-known-hosts FILE

Use SSH known hosts FILE for host key validation.

-no-compress

Create an uncompressed backup.

-private-keys FILES

Use comma-separated SSH private keys FILES for public key authentication. -restore

Restore from given backup.

-version

print version information and exit.

If the path in LOCATION is a directory, cdrouter-backup will create a backup named cdrouter-backup-YYYYMMDDHHmmss in that directory.

If -known-hosts is not given, the default is ~/.ssh/known_hosts.

If -private-keys is not given, the default is ~/.ssh/id_dsa, ~/.ssh/id_ecdsa, ~/.ssh/id_ed25519 and ~/.ssh/id_rsa. [root@pod67 cdrouter-data]#

Tip #5: Automate your testing

And level up with the CDRouter API

Tip #5: Level up with the API

- CDRouter's web API gives you full control over CDRouter. Use the API to automate your testing.
- Anything you can do in the browser based web GUI can be done via the API as well, including:
 - Launching tests
 - Monitoring progress & retrieving results
 - Searching and filtering logs
 - Rerunning and/or excluding specific tests
 - Creating and editing configs

Click <u>here</u> for more info on using CDRouter to automate testing within GitLab pipelines!

Tip #5: Level up with the API

Using Python to automate your testing? If so, click <u>here</u> for info on the **cdrouter.py** module.

For more information on CDRouter's RESTful web API please visit our <u>support site</u> or click <u>here</u>!

Tip #6: Test for stability over time

With this simple yet tasty recipe

What is **stability testing** and why is it important?

- Stability testing is the continuous verification of device functionality and performance over long periods of time.
- It often reveals issues that may otherwise be hidden if testing is focused solely on functional *or* performance verification.
- Stability testing highlights how normal functional protocol interactions impact performance over time and vice-versa.

CDRouter makes stability testing very easy! Check out our "Beyond the phy, testing fully feature Wi-Fi products" webinar for more information! <u>link</u>

Tip #6: **Test for stability over time**

Many devices will exhibit consistent and sustained performance over time in simple environments with few clients and minimal protocol interactions.

Increasing the functional load on the DUT while running performance tests is more realistic and interesting.

Performance testing alone is <u>not good enough</u>!

Tip #6: **Test for stability over time**

Q, View Result ,III Visuali	e Result				
	Applicatio	n Throughput for WiFi stabilit Run Yesterday at 3:	y (functional + performance) 28 PM		
					500
					400
					300
					200
					100
21:00	22:00	23:00 22: Nov Time	01:00 02:0	0 03:00	d
I I	22:00	22. N	ny. 02		U
		IPv4 TCP Download IP	v4 UDP Download		
	21:00	Applicatio	Application Throughput for WiFi stabilit Run Yesterday at 3:	Application Throughput for WiFi stability (functional + performance) Run Yesterday at 3:28 PM 21:00 22:00 23:00 22. Nov 01:00 02:0 Time 01:00 02:0 Brid TCP Remined = Ided URP Remoted	Application Throughput for WiFi stability (functional + performance) Run Yesterday at 3:28 PM

Common protocol interactions often have a significant impact on device performance **over time**.

Stability testing will reveal sneaky performance issues that are very difficult to identify otherwise.

Stability testing takes the right tools and time. CDRouter makes it easy!

Tip #6: **Test for stability over time**

Matt's stability testing recipe

Start with a new test package. Add:

- The <u>Top 100 test list</u>
- The wifi test module
- Sprinkle in the cdrouter_scale_1 and perf_1 through perf_4 test cases

Loop 50 times with 10 clients. Enjoy consistent functional results and stable performance!*

* Kick it up a notch by adding IPv6 tests!

Tip #7: Find what you're looking for

Using CDRouter's log filtering tools

Tip #7: Prune the test logs

log line.

CDROUTER Results	× +		
← → C ▲ Not Secure pod1/	esults/20221121210413/tests/1		t 🛧 ២ 😋 🌩 🗖 M
🧭 qa CDRouter	HOME DEVICES CONFIGURATIONS	PACKAGES RESULTS	SUPPORT MATT
© start 20221121210413 © Show comments Test result: pass (00:33)			HI H H H Files Files All Lines Pack
This the lo	ext box allows filtering of g file using keywords.		
specific line in the expa D + SHIFT on the filte	nded red	Filter	er on the 'type' of log lines.

Tip #7: Prune the test logs

The *Log Only* view strips packets and log messages from the individual stacks in use. Only log lines from CDRouter's main process are displayed.

CONFIGURATIONS

PACKAGES

255.255.255.255

255.255.255.255

255.255.255.255

RESULTS

CDROUTER | Results

130 2022-11-21 21:04:34.607 0>>>(lan): 0.0.0.0

134 2022-11-21 21:04:39.610 O>>>(lan): 0.0.0.0

148 2022-11-21 21:04:44.612 0>>>(lan): 0.0.0.0

C

Q qa|CDRouter

□ start 20221121210413

O Show comments | Test result: pass (00:33)

× +

129 = 2022-11-21 21:04:34,603 INFO(lan): Sending DHCPDISCOVER with xid fb899181

133 2022-11-21 21:04:39.609 INFO(lan): Sending DHCPDISCOVER with xid fedd9391

147 = 2022-11-21 21:04:44.611 INFO(lan): Sending DHCPDISCOVER with xid 8e597473

A Not Secure pod1/results/20221121210413/tests/1?search=DHCPDISCOVER

DEVICES

This makes it easy to filter the log on specific keywords, like DHCPDISCOVER, for example. Did you know that you can annotate logs and change from absolute to relative time within a log?

Tip #8: Enhance your testing

With user defined scripts

Run external commands and custom scripts during your CDRouter test run to gain greater control and insight into your DUT:

- Query the DUT for statistics
- Check connectivity
- Enable debugging and gather data
- Update configuration and/or firmware

- Run external CLI commands or your own custom scripts
- Run the same script before or after every test case
- Run a different script before or after a specific test
- Run external scripts from within your custom test cases

SCRIPT_exec allows external scripts to run without suspending CDRouter.

- Access testvar values
- Pass arguments
- Capture output returned by script

Embed SCRIPT_exec calls within your config file to run your scripts in between test cases!

See this <u>KB</u> article for more information and a few examples!

00 🧭 How to run a command or scrip 🗙 🕂 4 support.qacafe.com/knowledge-base/can-i-run-one-of-my-scripts-before-or-after-a-test-case/ $\langle \rangle$ Support Home Quick Start User Guides Training/Webinars **Test Summaries** Knowledge Base Login **CDRouter Support** knowledge-base version 13.8 HOME / KNOWLEDGE-BASE / HOW TO RUN A COMMAND OR SCRIPT BEFORE OR AFTER A TEST CASE A shell command or user-defined script (or multiple scripts) can be executed before or after any test case using the built-in buddy::pre_test_command or buddy::post_test_command functions. These functions should be included in your CDRouter configuration file and can be used to execute any block of Tcl code. To execute an external command or shell script within these functions, the **SCRIPT_exec** proc should be used.

Note each *buddy::pre_test_command* or *buddy::post_test_command* function corresponds to a single test case. You must redefine the function in your config file for each test case where you want it to run.

Example 1: Execute a user-defined script after cdrouter_basic_1

Tip #9: Spot deltas quickly

Using the config and result diff feature

Tip #9: Spot config diffs quickly

CDROUTER Configs C → C A Not Secure pod2/c	× +		т А ф © © \$ П М :
🧭 qa CDRouter 🤇	HOME DEVICES CONFIGURATI	IONS PACKAGES RESULTS	SUPPORT ADMIN -
Configurations	∎New PEdit ©Copy QViw	→ Diff > Tag > Bulk Edit ▲ Import ⑤ Exp	port
Show	■ NAME ▲	DESCRIPTION	LAST MODIFIED OWNER TAGS
Owned by podbrain 👻	Cisco PIX 501	This DUT has an IKE tunnel configured and runs the tests in the IKE add-on	Yesterday at 1:09 PM podbrain IKE-NATT lan-eth2 wan-eth3
Filter by name	D-Link DIR-655	Baseline wired config for D-Link DIR-655	Yesterday at 1:09 PM podbrain lan-eth4 wan-eth5
	D-Link_DIR-655_dhcp-c	Copy of baseline config for dhcp-c testing; has smaller DHCP lease time.	Yesterday at 1:09 PM podbrain lan-eth4 wan-eth5
Popular Tags	D-Link_DIR-655_wireless	DIR655 with SSID specified	Yesterday at 1:09 PM p-dbrain Ian-wian0 Ian2-eth4 wan-eth5
Show all tags Clear selection	D-Link_DIR-655_wireless_2	DIR655 with SSID, BSSID, and channel specified	Yesterday at 1:09 PM podbrain lanswer lan2-eth4 wan-eth5
Filter by tag name	D-Link_DIR-655_wireless_ParentalControl	DIR655 with SSID specified	Yesterday at 1:05 PM podbrain lan-wlan0 lan2-wlan1 waa-465
DELink, 4300 Drivert.cader SSID PPTP lan-witin0 Basic wireless	6 configs go to page		
: Idle			CDRouter 13.8.2 (b5c4090) running on pod2 [10.0.2.2] © 2022 QA Cat

To get started: Select two configs and click the **Diff** button, OR select a single config and click the **Diff** button to compare to the default config.

Tip #9: Spot config diffs quickly

Configuration A may be modified directly from the diff view.

Differences between the two configs will be highlighted in yellow.

Configuration A and B may be swapped, making it possible to edit either configuration from the diff view.

Find, *Previous*, and *Next* buttons make it easy to navigate to individual diffs in either Configuration A or B.

Tip #9: **Spot** *result* **diffs quickly**

Configs may be diffed directly from the Results page as well!

Click the *Diff Results* button to display the selected results in a new view.

Up to five results may be diffed simultaneously.

CDROUTER Results	×		-										
	HO	ME	DEVIC	ES CONFIGUE	RATIONS PACK	(AGES	RESULTS						
Results	.ıl V	suar	d ≓ Dif	f Results	Configs archi	ve 🔊 1	Гад 🌶 В	ulk Edit	1	Import	🗈 Export.		D D
Show		*	DATE	NAME -	PACKAGE	DEVICE	STATUS	PASS	FAIL	ALERTS	τιμε	SIZE	0
Owned by podbrain		~	2022-02- 22 at 10:45 PM	20220222224545	Cisco_PIX_DOS	Cisco PIX 501	completed	8	0	-	02:55	3.4 MB	pc
Current Results		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2022-02- 22 at 10:16 PM	20220222221606	D-Link_DIR- 655_dhcp-c_tests	D-Link DIR-655	completed	7	0	r - 1	28:39	684.8 kB	pc
Filters Clear all All Devices		☆	2022-02- 22 at 10:11 PM	20220222221134	DIR-655_wireless2	D-Link DIR-655	completed	28	0	(-)	04:26	4.1 MB	pc
Filter by package name		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2022-02- 22 at 9:59 PM	20220222215908	DIR-655_wireless1	D-Link DIR-655	completed	86	0	-	12:20	10.0 MB	pc
Finer by testcase		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2022-02- 22 at 9:55 PM	20220222215509	DIR-655_nmap	D-Link DIR-655	completed	32	0	-	03:53	22.4 MB	pc
Popular Tags Show all tags Clear selection		<u>∧</u>	2022-02- 22 at 9:45 PM	20220222214525	DIR-655_DOS	D-Link DIR-655	completed	15	0	-	09:38	4.5 MB	pc
Filter by tag name			2022-02-			Ciase DIV						045.0	

Tip #9: **Spot** *result* **diffs quickly**

Click on a pass/fail indicator to navigate directly to the test log.

Use the filtering and searching features to quickly zoom in on any deltas.

The Diff Results tool is very useful for identifying changes in behavior when performing regression tests.

🖌 qa CDRouter	HOME DEVICES	CONFIGURATIONS PACKAGES RESULTS	CDROUTER 1	3.8.2 UPGRADE AVAILABLE! SUPPORT ADMIN
Results	TEST NAME	20220222213843	20220222214525	2022022224545
Filters	cdrouter_dhcp_70	×	-	-
itatus	cdrouter_dos_1	-	~	~
All Tests -	cdrouter_dos_2	_	~	~
earch	cdrouter_dos_10	-	~	-
Filter tests	cdrouter_dos_20		~	-
Show only tests shared by all results	cdrouter_dos_21	-	~	~
Show only differences	cdrouter_dos_30		~	~
_ show only differences	cdrouter_dos_31	-	~	~
	cdrouter_dos_32	-	~	~
	cdrouter_dos_33	-	~	~
	cdrouter_dos_34	_	~	~
	cdrouter_http_300	-	~	-
	cdrouter_http_301	-	~	-
	cdrouter_https_300	-	~	-
	cdrouter_https_301		~	-
	rfc5508_req_2	-	~	-

CDRouter 13.8.1 (41cdd5e sc-20866/use-ipv6wandutduid-instead-of-dhcpclientmac), built 2022-11-22 12:21:09 running on pod2 [10.0.2.2] © 2022 QA Cafe

Other new features

Introducing the NTA1000v7M

- Support for 802.11ax virtualization
- Simulate multiple 802.11ax clients

Expand your coverage with parallel testing

 Run multiple tests in parallel on a single NTA1000

Ideal for high-volume testing working with CI/CD systems

Maximize use of NTA1000 portsRequires additional license

Simplified fixed-wireless support

- Working with test equipment vendor to provide simplified 5G/LTE connectivity support in your lab
- Allows CDRouter to wrap around the test setup just like any other access concentrator
- Look for more news in Q1 2023

Resources

https://www.qacafe.com/cdrouter-training

https://www.qacafe.com/how-to-build-automated-test-strategy-guide/

https://support.qacafe.com/knowledge-base/

https://support.gacafe.com/knowledge-base/cdrouter-gitlab-integration/

Testing end devices (smart home, STB, etc.)? Ask us about PassPort!

